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Abstract. This paper summarizes our work carried out over the last
four years on multi-band and multi-stream processing as means to achieve
robust automatic speech recognition (ASR). Main focused is laid on the
“full combination” approach which integrates over all possible positions
of reliable data, instead of combining the nominal subbands or streams
only. The main combination rules are summarized and the final results
from a wide range of experiments are presented.

1 Introduction

Different approaches to increase the robustness of an automatic speech recognizer
comprise, among others, more appropriate feature extraction, better acoustic
modeling and advanced decoding schemes. In this framework the goal of this
work was to investigate and develop new paradigms for noise robust ASR based
on multi-band (MB) and multi-stream (MS) processing?.

After the speech signal has been converted to the spectral domain, in MB
processing, the entire frequency domain is split into frequency subbands which
are processed independently up to a certain point where the information from
each band is recombined. In MS processing, either the entire frequency domain
is considered several times, each time employing different processing strategies,
or other modalities, such as visual representations, of speech production are
included. The information from each of these streams is correspondingly recom-
bined later in the process.

Both approaches try to better utilize the inherent redundancy in the speech
signal either by processing different parts of the signal separately or by differ-
ent processing of the same signal stream. If the streams are correlated, it can
be assumed that combination is best carried out on the feature level so that
dependencies between the streams can be modeled. In case when the streams
are corrupted by noise, the correlation between the streams is decreased. It can
thus be assumed that the streams are better modeled independently, as this is
likely to result in independent errors conducted by each stream recognizer due

3 Although the latter is a generic term of the first, we distinguish these two approaches
due to historical reasons: MB processing was — as far as our research is concerned —
investigated first and its principle was then generalized to multi-stream processing.



to train/test mismatch. Nothing can be done about these errors when dealing
with a single-stream (fullband) recognizer only. However, when combining the
outputs of two or more recognizers, independent errors coming from any one of
them can be dampened. Thus, the MB and MS systems are expected to provide
higher noise robustness to any kind of noise than a single-stream system, without
any knowledge of the noise or the necessity of different training databases and
noise adaptation phase.

In this framework, we investigated several frame-level combination ap-
proaches, some of which employ a reliability term for each subband or stream
[9]. The MB and MS strategies were developed on clean speech data and their
noise robustness was tested and evaluated on noise-corrupted speech with the
noise stemming from various additive noise environments. The different MB and
MS recognizers were compared amongst each other as well as to the baseline
fullband recognizers.

Our research was carried out in the framework of Hidden Markov Model
(HMM) based speech recognizers, where HMM emission probabilities were esti-
mated through either Gaussian Mixture Models (GMMs), or Artificial Neural
Networks (ANNs). The former outputs likelihoods so that combination of dif-
ferent streams is carried out on these, whereas the latter outputs posteriors
which are used for recombination in this case (here on the frame level). After
recombination of posteriors, the recombined posteriors are divided by the prior
probabilities to obtain (scaled) likelihoods for the regular (“one-dimensional”)
Viterbi decoder as used here.

2 Multi-Band Processing

In multi-band processing, the speech signal in the spectral domain is split into
several subbands which are processed independently for feature extraction and
possibly probability estimation before they are recombined for further process-
ing. In the case when noise only occurs in one frequency subband, it does there-
fore not mix with the other clean feature coefficients which allow for reliable
decoding of the clean part of the speech. Similarly, in missing data (MD) [4,3,
12] processing as applied to robust ASR, it is tried to segregate speech and noise
in the input signal, and then to recognize at each time frame the clean speech
part only. This includes the necessity for a noise detection algorithm and for the
processing of continuously varying combinations of (clean) feature coefficients.
Moreover, only one fixed decomposition into clean and noisy data (a so-called
“MD mask”) is considered at each time frame.

Original subband processing misses important frequency correlation informa-
tion among subbands and is therefore usually not competitive in real-environ-
mental noise. We developed in this work, an approach to subband processing
which provides a solution to the problem of both loss of frequency correlation in
MB processing and fixed MD masks through a revised decomposition of the fre-
quency band into an exhaustive and mutual exclusive set of frequency subbands.
This induces new combination strategies as described below.



Full Combination Processing In MB ASR it was up to now assumed that
subbands could be processed independently, with each subband modeled by a
distinct recognizer. In the case of noise-corrupted speech in one subband, cor-
rect recognition on the remaining clean subbands could then provide enough
information to decode the entire input data. In case of clean speech and speech
corrupted with wideband noise, however, experiments in ASR have shown that a
MB system of this type very often leads to decreased performance as compared
to a fullband recognizer, due to missing cross correlation information. To model
more closely what is actually going on in humans who integrate information from
even dispersed frequency regions, and to obtain higher performance in both clean
and (wideband) noise corrupted speech by a MB system, we had to find a revised
model which also exploits correlation information between (adjacent and non-
adjacent) subbands. This should be done by integrating also dispersed frequency
information, when some frequency regions are missing, in order to exploit this
correlation and redundancy in the spectrum.

Thus, at each time frame, as much clean correlated information as possible
should be modeled. In the MD approach, noise corrupted frequencies in each
frame are detected and excluded, while the remaining reliable data is modeled
as a single stream. However, accurate noise detection is very difficult. In the
“full combination” (FC) approach taken here, data is divided into subbands and
recognition is performed on every possible combination of subbands, after which
the output from these experts is integrated by one of several possible combination
strategies.

The FC paradigm for MB ASR For most application areas, the position of the
noise is not known and can be in any subband and any number of subbands. We
therefore have to find a way in which we can consider all possible subsets of the
frequency domain in order to find the clean data set.

For this, let us define the set of all possible combinations of B subbands,
which include the streams consisting of no, one, two etc. (adjacent and non-
adjacent) subbands up to the combination of all subbands, as C, and the set of
events b; (i = 1,...,B = 2B) as follows:

B denotes the set of events b; that data in combination i is clean speech
data, and data not in combination ¢ is completely uninformative and can
therefore be regarded as missing.

On the assumption that each subband is either completely clean or completely
uninformative, such a set of events is mutually exclusive and exhaustive, as only
one combination of subbands can be the largest clean combination, and one or
other must be the true clean combination, because all possible combinations
have been considered. Denoting P(b;) the probability that event b; occurs, we
can write:
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If some subbands are not corrupted by noise, it is likely that the best stream?*

is the largest combination of clean subbands®. However, under wideband noise
conditions it can also be the case that some less noisy subset carries more useful
information than the empty set.

Let us now consider how this new FC approach to subband processing can
be implemented in a speech recognizer. Considering all possible combinations
of subbands means that features have to be extracted not only in the nominal
subbands but also in each combination of subbands, i.e. in the B feature streams
(note that this includes the empty set). Data within each feature stream can be
further processed for decorrelation and/or other transformations, as required.We
can then associate with each event b; an expert ¢ which has at its input the
clean data defined by event b;. In (posterior-based) probability combination, a
recognizer has thus to be trained on each of the B feature sreams, as shown
in Figure 1 for the case of two subbands. Realization of the FC approach in
posterior- and likelihood-based systems is discussed below. A further advantage
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Fig. 1. Illustration of full combination processing with MLP or GMM
classifiers for two subbands. Features are extracted from all possible
combinations of subbands.

of FC processing over “standard” subband processing is that the question of how
many subbands are to be chosen and the exact position of the subbands gets
less important as in the FC approach all subbands are considered by themselves
and in combination and thus correlation between all subbands is considered.

3 Combination Strategies

Different strategies for the recombination of stream probabilities exist, such as
the sum or product rule. In each of them, we have to combine likelihoods or

4 Note that, in order to be able to refer to a ‘subband ’ and ‘combination of subbands’
in one term, we use the term ‘(data) stream’ to account for both.

% This is under the assumption that the stream acoustic models are trained on clean
speech only.



posteriors according to a function which often depends on weights representing
the reliability of each (subband ) stream.

In this section, we present the probability combination strategies which were
developed in the framework of this work and which are based on the FC ap-
proach introduced in the preceding section. Each of the combination strategies
is presented for both the posterior-based case and the likelihood-based case. The
likelihoods need to be normalized before combination to account for the different
range they usually cover.

Despite the fact that the preceding section was concerned with combining
subband experts, the expert combination strategies presented here are not spe-
cific to subband expert combination, but can be applied to combinations of
experts trained on any (preferably complementary) data streams. More specifi-
cally, the combination strategies are also an important part of the MS approach.

3.1 FC sum rule

FC posterior decomposition For posterior decomposition, a separate ex-
pert is trained for each of the B possible combinations. Introducing the hidden
variable b; (i = 1,...,B) indicating which band subset is clean, as defined in
Section 2, and with the b;’s being mutually exclusive and exhaustive, P(g|x)
can be expressed as

B
P(gr|z) = ZP(qk|xi)P(bi|x) by definition of b; (2)
i=1
P(b;|z) is the reliability term for each expert. If b; is true, then P(qx|z;) should
be accurately estimated by expert ¢ (which was trained on clean data). Otherwise
the estimate will not be reliable.

Approzimation to Full Combination (AFC) In the case of posterior-based ex-
perts (such as Multi-Layer Perceptrons (MLP)), it is necessary to train 28 (MLP)
experts, and the approach is thus limited to a small number of subbands. We,
therefore, proposed an approximation scheme which estimates the probabilities
for each combination of bands based on the single band experts only.

Under the assumption of conditional independence between subbands [ in a
combination z; p(zilqr) = [[;c,, P(z1lqr), we can derive the posteriors P(qk|z;)
for each subband-combination from the single-subband posteriors P(gx|z;) in
this combination (i.e. [€x;) as follows

P(gilz:) = © P~ 7l (gy) T] Plaxlz) 3)
lex;

where © is a normalization constant independent of g3, such that EleP(qk |z)=
1 [8]. These approximated combination posterior probabilities (3) can now be
used in any combination strategy where separately trained posteriors are used,
such as (2). We see in the following how with FC for likelihoods, under certain
conditions the stream likelihoods can be derived from the fullband likelihood
without training other than the fullband expert.



FC likelihood decomposition using marginalization We can convert the
FC Suwm rule for posteriors (2) to a FC Sum rule for likelihoods by using Bayes’
rule.

wlqk f:p(le‘Ik P(blz) 4)
p(z

where p(z:) = Y5 p(wi|ar) P(ax)-

In the FC Suwm rule for likelihoods (4), we sum over all possible positions
(i=1,...,B) of reliable subbands. Under the condition that subband combina-
tion coefficients are selected from fullband coefficients without further process-
ing (such as orthogonalization within a combination), the parameters for the
marginal probability density functions (pdfs) p(z;|gx) can be obtained directly
from the parameters for the fullband pdf by marginalization.

Following the derivation which leads to expression of the marginal pdf for
the data “present” in MD processing [4,9], we can derive the state likelihoods
p(z;|qx) for each stream ¢ by integrating over the unreliable, that is, “missing”
part z; = x — x; of the data, which is disregarded in the respective stream:

p(ailar) = / p(alax) e 5)

7
T;

For the mixture pdfs of M mixtures m; as commonly used for likelihood modeling
it holds:

M
[ plelan) dzi = 3 Plmjla) T] plalms, ) (6)
! j=1 les;
where s; denotes the set of feature coefficients in subband combination 7. In the
case where each mixture component pdf p(z|m;,qx) is modeled as a diagonal
covariance Gaussian, with mean pj;; and variance vector af-k, the mean and
variance vectors for the marginal pdf p(x;|m;, qr), i.e. i and afjk, are simply
obtained by striking out the rows and columns from the mean vector p;; and
covariance matrix 0%, corresponding to the missing components [4]. Substituting
(6) back into (4) we get the full combination formula using marginalization for
likelihood-based systems.

In the case when each stream only comprises one feature component, the
above implementation of the FC approach can be interpreted in MD terminology
as a weighted sum over all possible sets of hard MD masks using marginalization
without bounds.

Preliminary experiments employing marginalization in FC MB ASR revealed
that although this avoids the need to train more than one fullband expert, the
remaining problem of having to evaluate the marginal likelihood for every com-
bination of subbands is still very computationally expensive, and this prevented
us from running further experiments.



3.2 FC product rule

Experimental results have often shown that, despite the limitations of the in-
accurate independence assumption between the different recognizers working on
each combination of subbands, the recombination by a product can be a more
effective method of combining the outputs of multiple classifiers than the sum
rule [6,1,5,7,10,11].

FC product rules for likelihoods Under the inaccurate assumption of inde-
pendence between the different recognizers, the full likelihood can be decomposed
into a product of B stream likelihoods for each state ¢, according to:

B
p(zlqr) =~ O HP"” (zilqr) (M)

with p(z;|qx) the state likelihood of expert i, which was trained on part z; of data
z only, and @ = Hilgik a normalization constant, where 6;;, = fwi pvi(zi|qr) dz;

so that [p(z|qr) dz=1.

FC product rules for posteriors Under the assumption of conditional inde-
pendence used in (7), we can derive for the posterior-based case the FC PropucT
rule as follows:

B
P(gilz) = 6 PP (qi) [ | Plaxlz:) (8)

i=1

where O is a normalization constant, independent of g, such that }, P(qx|z)=1
(for exact derivation see [9, p. 87]).

4 Multi-Stream Processing

In multi-stream processing, different possibilities exist to incorporate additional
knowledge sources. They can stem, among others, from different data record-
ings (such as audio and visual streams), pre-processing, feature extraction, or
from a different choice, structure and training of the classifiers. In this work,
we concentrated on the use of different feature streams, from either different
feature extraction techniques (such as PLP and MFCC features) or the same
technique but employing different parameters and/or pre- or post-processing
strategies (such as PLP and J-RASTA-PLP features) . Thus, the same (fullband)
frequency domain undergoes different processing strategies leading to different
feature representations which are used in individual recognizers, the errors of
which are hoped to be complementary. The streams are recombined, just as in
the MB approach according to FC processing, later in the process to dampen the
errors.



5 Experimental Evaluations and Conclusions

The proposed algorithms for combining multiple subband or fullband streams,
employing equal weighting, were tested on a continuously spoken digits database
(Numbers95) [2] under noise-free (matched) conditions and under noise-corruption
by artificial band-limited (stationary and siren) and natural wideband noise (mis-
match) [8]. Results are presented for the case when HMM /MLP hybrid systems
were used. As our goal was to develop systems which can easily generalize and
adapt to unseen data, training was only carried out on clean speech. All tests
were run using both PLP and J-RASTA-PLP features. Due to in general higher
recognition rates in noisy speech, results are given for J-RASTA-PLP features
only.
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Fig. 2. Multi-band processing (4 subbands) using the ”standard” STD (employing
4 trained MLPs) and ”full combination” FC (employing 16 trained MLPs) recombi-
nation strategies as compared to the fullband approach on clean speech and speech
corrupted with various additive noise cases. Features used are the j-rasta features.

It can be seen that the MB FC approach (FC Sum and FC PropucT ) is com-
petitive in clean speech (which is not the case for standard multi-band processing
(STD sum and STD product)) and usually ranges among the best systems for
all noise cases (cf. Figure 2). Depending on the noise case, it was observed that
the FC SumM rule generally obtains better results in band-limited noise, and the
FC Probuct in wideband noise.



For performance improvement in clean speech, MS processing should be ap-
plied (cf. Figure 3), though none of our systems tested gained a significant im-
provement over the best (i.e. J-RASTA-PLP ) baseline.

For MS processing in noise, the results were less conclusive, but again it
was observed that the FC Sum rule obtains better results in band-limited noise,
whereas in wideband noise it is the FC PropucT rule.
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Fig. 3. Multi-stream processing using the ”standard” STD (employing 3 trained
MLPs) and ”full combination” FC (employing 8 trained MLPs) recombination strate-
gies as compared to the fullband (single-stream) approach on clean speech and speech
corrupted with various additive noise cases. The streams consist of different features,
namely PLP , J-RASTA-PLP and MFCC features. Fullband baseline is again the
J-RASTA-PLP based system.

When looking at the performance achieved by PLP versus J-RASTA-PLP fea-
tures, we observed that PLP features usually gain lower word error rate in clean
and non-stationary band-limited noise whereas J-RASTA-PLP features performed
better in stationary band-limited noise and wideband noise.
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